

Keeping the World Flowing for Future Generations

R Series RCx-xxxAS-1.05 user manual

RCx-xxxAS-1.05

(12-24 VDC; Modbus Control)

Hazardous Location (Only model numbers RCx-BxxAS w/ ex-proof lid engraving)

USER MANUAL

Contents

INTENDED USE	3
MANUFACTURER DETAILS	3
MEANING OF SYMBOLS	3
INSTALLATION	3
Environmental Conditions	3
Mounting	4
Grounding and Securing	4
Wiring	5
Wiring for Explosion Proof Actuators	5
Wiring for Non-Explosion Proof Actuators	6
Power Supply and Current Draw	6
Control Signal and Feedback	7
Serial Port Connection	7
GENERAL SPECIFICATIONS	8
OPERATION	9
DIP switches	9
Set the communication parameters	9
Set the actuator address	10
Modbus Protocol	11
Speed and Torque Settings	12
Speed and Torque Details	13
Writing to All Other Holding Registers	14
Reading the Input Registers	16
Using Function Codes	18
Calibration	18
Troubleshooting	19
Manual Override	19
CERTIFICATIONS	20
Hazardous Location Rating (Ex)	20
Electrical Compliance (EC)	21
Electromagnetic Compatibility (EMC)	21
Dust and Water Ingress Protection (IP)	21
ACTUATOR DIMENSIONS	22
PART NUMBER BREAKDOWN	25
LABEL BREAKDOWN	26

INTENDED USE

Rotork R-Series actuators are intended to be used in combination with any valve to regulate the flow automatically. The output of the actuator is rotary or linear, and is paired with the valve stem to achieve the desired flow control.

MANUFACTURER DETAILS

Rotork manufactures the R-Series actuator at the following facilities:

Hanbay Inc. 135 Brunswick Blvd. Pointe-Claire, QC H9R5N2 Canada Fairchild Industrial Products Company 3920 West Point Blvd. Winston Salem, NC 27103 USA

MEANING OF SYMBOLS

The exclamation point within an equilateral triangle is intended to alert the user to the presence of important operating and maintenance (servicing) instructions in the literature accompanying the product.

The Lightning Flash with arrowhead symbol within an equilateral triangle, is intended to alert the user to the presence of un-insulated "dangerous voltage" within the product enclosure that may be of sufficient magnitude to constitute a risk of shock to persons.

INSTALLATION

The safety of any system incorporating the equipment is the responsibility of the assembler of the system.

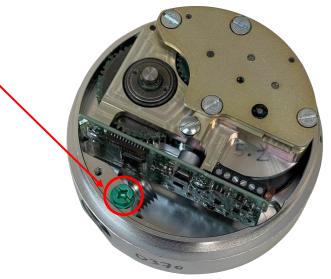
Environmental Conditions

The R-Series actuator has an IP68 rating and is recommended for outdoor use. The relative humidity of the environment has no effect on the R-Series.

The ambient temperature range for the standard R-Series is -20 to 40 °C (-4 to 104 °F). The internal heater option shifts the temperatures to a lower range of -40 to 40 °C (-40 to 104 °F).

The standard R-Series has been approved for use at altitudes of up to 2000 m.

Mounting


The holes indicated in the image are intended for a mounting bracket. They are threaded for $\frac{1}{4}$ -20 and are 0.4" deep.

Grounding and Securing

The other two visible holes are threaded 10-32, 0.50" deep, and are intended to be used to lock the lid in position (top) and as an external grounding connection (bottom) using user-supplied screws.

For detailed dimensions see p.20.

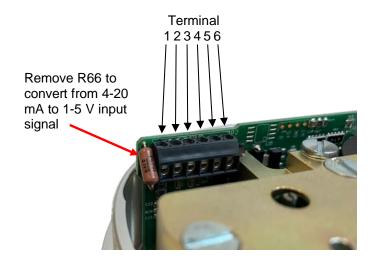
Additionally, there is a grounding connection supplied internally.

Wiring

Wiring for Explosion Proof Actuators

The **RCx-BxxAS** Explosion-Proof actuator does **not** come with a pre-installed cable, nor cable gland. A cable gland that meets site specifications for the appropriate hazardous location rating is required for installation. The cable gland and the cable for hazardous location should be installed by qualified personnel in accordance with site and local requirements.

The actuator comes standard with a $\frac{1}{2}$ " FNPT thread cable entry. See p.20 for location of $\frac{1}{2}$ " FNPT housing access. A cable with 5 wires is required; it is recommended to use 16-24 AWG for all wires.


Standards for cable gland and cable in hazardous locations:

Compliance Standards Required to be Met	Cable Types Permitted in Class I Division 1 Hazardous Locations
ANSI / UL 514B, ANSI / UL 1203, ANSI / UL 2225, C22.2	Non-Armored Extra Hard Usage Cord & TC-ER-HL
ANSI / UL 514B, ANSI / UL 1203, ANSI / UL 2225	Armored IEEE 45 & IEEE 1580 Marine Shipboard Cable
ANSI / UL 514B, ANSI / UL 1203, ANSI / UL 2225	MC-HI, ITC-HL
ANSI / UL 514B, ANSI / UL 1203, C22.2	Teck 90 (Canada Only)

* In explosion-proof models, the FNPT thread is not intended for conduit connection. Cable gland only.

Once the cable and cable gland are installed, connect the wires to the pins on the terminal block as indicated here:

Pin	DC power supply only
6	+24VDC
5	Power gnd.
4	TD(A)
3	TD(B)
2	Isolated input signal gnd.
1	Isolated input signal (4-20 mA)

If the sensing resistor R66 is removed, we recommend placing a 10K resistor between signal and signal GND, or simply using shielded cables (for noise reduction).

Wiring for Non-Explosion Proof Actuators

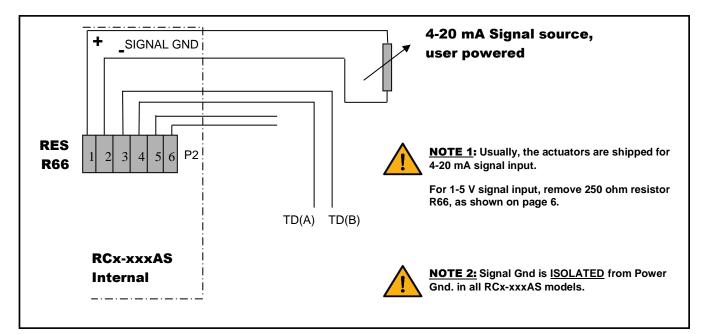
The actuator comes standard with a Turck 6-position connector and a 20' cable (6x 22 AWG) with plug. Cut the cable to the length required, then connect according to the following wire color schematic.

Pins indicate the connection of the cables to the terminal block on the PCB board within the actuator. These are pre-wired at the factory for non-explosion proof actuators.

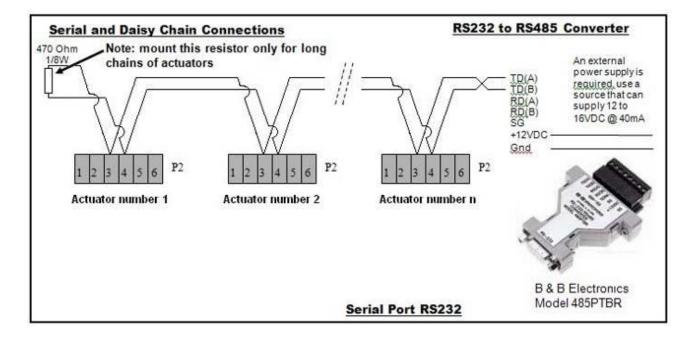
Pin	Color	DC power supply only
6	White	+24VDC
5	Black	Power Gnd
4	Pink	TD(A)
3	Grey	TD(B)
2	Brown	Isolated input signal gnd.
1	Blue	Isolated input signal (4-20 mA)

Wire color schematic for "Turck 6" cable:

Note: Power ground must be externally connected to earth ground, or one of the case grounding screws (see INSTALLATION section) must be used to connect a grounding wire of minimum 22AWG.


Power Supply and Current Draw

The **RCx-xxxAS** may be connected to voltages ranging within 12-24 VDC. The DC supply to the actuator must be limited by a 4 A fuse or circuit breaker; it is recommended to have this installed near the actuator.


The current draw will range from minimum 100 mA to maximum 3 A while the actuator is active. When not moving, the actuator draws approx. 50 mA.

Control Signal and Feedback

Locate the correct connection terminals as shown in the picture on p.3, then connect your communication wires to PIN 3 and PIN 4 (grey and pink wires) as shown below.

Serial Port Connection

GENERAL SPECIFICATIONS

Stall protection	Electronic position and motion detection
Gears & Bearings	Metal and bronze, oiled/greased for life
External fasteners	Stainless Steel
Life Expectance	250'000 cycles in specified conditions
Motor	Brushless DC motor, computer control
Positioning precision	± 0.25°
Positioning resolution	± 0.15° max.
End travel detection	By motion detection
Power setting	Adjustable
Mechanical Shock	Repeated ≤130 g-force, no effect Occasional ≤150g-force, no effect >150 g-force not tolerated
Mechanical Vibration	Random SAE J1211, Chassis, Exterior
Thermal Shock	-20 to +60 °C (-4 to 140 °F) in 10 min.
Weight	RxJ, RxL, RxM: 980 g RxH, RxF: 1700 g
Isolated Signals	Optical isolation min. 1000 V

OPERATION

DIP switches

The DIP switches allow you to change the settings on your actuator. To flip a switch, gently use a small flat-head screwdriver.

See the table below for DIP switch functionality.

In this example DIPs 1, 2, 5 and 12 are on.

DIP	Function
1	Baud Rate: Choose the rate at which information is transferred. See p.9.
2	
3 – 8	Actuator Address: See p.10.
9 – 11	Deactivated
12	Direction/Calibration: Toggle while powered to re-calibrate actuator (find valve seat). Also sets direction in which the actuator will open and close. See p.18.
	Example: The RCM model actuator turns clockwise when the signal is decreased with DIP 12 in the OFF position. Putting DIP 12 in the ON position will cause counter-clockwise turning for a decrease in signal. For changes in DIP 12 position to take effect, the power to the actuator must be cycled.

Set the communication parameters

Data bits: 8

Parity: None

Stop bits: 1

<u>Baud Rate</u>: The communication baud rate can be set by using the first two positions of the **DIP switch selector**. Check the table below for settings.

To change the baud rate, turn off the actuator, change the setting of DIP switches and power it up again.

DIP 1	DIP 2	Baud rate
OFF	OFF	2400 bps
OFF	ON	4800 bps
ON	OFF	9600 bps
ON	ON	19200 bps

<u>Response time:</u> The response time is between 8ms to 35ms. This means, after sending a frame, you have to wait at least 35ms for the answer coming back from the actuator.

Set the actuator address

With the **DIP switch selector**, you can set any address between 1 and 63. (1 = "On" 0 = "Off"). To change the address, turn off the actuator, change the setting of DIP switches and power it up again.

Actuator Address	Dip3	Dip4	Dip5	Dip6	Dip7	Dip8
reserved	0	0	0	0	0	0
1	0	0	0	0	0	1
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	0	0	1	0	0
5	0	0	0	1	0	1
6	0	0	0	1	1	0
7	0	0	0	1	1	1
8	0	0	1	0	0	0
10	0	0	1	0	0	1
10		0	1	0	1	1
12	0	0	1	1	0	0
13	0	0	1	1	0	1
14	0	0	1	1	1	0
15	0	0	1	1	1	1
16	0	1	0	0	0	0
17	0	1	0	0	0	1
18	0	1	0	0	1	0
19	0	1	0	0	1	1
20	0	1	0	1	0	0
21	0	1	0	1	0	1
22	0	1	0	1	1	0
23	0	1	0	1	1	1
24	0	1	1	0	0	0
25	0	1	1	0	0	1
26	0	1	1	0	1	0
27	0	1	1	0	1	1
28	0	1	1	1	0	0
29	0	1	1	1	0	1
30	0	1	1	1	1	0
31	0	1	1	1	1	1
32	1	0	0	0	0	0
33	1	0	0	0	0	1
34	1	0	0	0	1	0
35	1	0	0	0	1	1
36	1	0	0	1	0	0
37	1	0	0	1	0	1
38	1	0	0	1	1	0
39	1	0	0	1	1	1
40	1	0	1	0	0	0
41	1	0	1	0	0	1
42	1	0	1	0	1	0
43 44	1	0	1	0	1	1
44 45	1	0	1	1	0	1
45	1	0	1	1	1	0
40	1	0	1	1	1	1
47	1	1	0	0	0	0
49	1	1	0	0	0	1
50	1	1	0	0	1	0
51	1	1	0	0	1	1
52	1	1	0	1	0	0
53	1	1	0	1	0	1
54	1	1	0	1	1	0
55	1	1	0	1	1	1
56	1	1	1	0	0	0
57	1	1	1	0	0	1
58	1	1	1	0	1	0
59	1	1	1	0	1	1
60	1	1	1	1	0	0
61	1	1	1	1	0	1
62	1	1	1	1	1	0
63	1	1	1	1	1	1

Modbus Protocol

Actuator parameters can be set by using the MODBUS (RTU) protocol.

Standard supported function codes: 02 (0x02) Read Discrete Inputs

03 (0x03) Read Holding Registers.

04 (0x04) Read Input Registers.

06 (0x06) Write Single Register.

<u>Function codes:</u> (see p.18 for examples) 100 (0x64) Re-zero the actuator. 101 (0x65) Close the valve. 102 (0x66) Open the valve.

If you try to use any other function code, the actuator will answer with the exception code **0x01** indicating that the attempted function code is not supported.

Actuator memory map:

Address (DEC)	ess (DEC) Address (HEX) Offset Register Name		Register Name	Туре	
0	0x0000	4001	MaximumSpeed		
1	0x0001	4002	MaximumPower		
2	0x0002	4003	NumberOfTurns		
3	0x0003	4004	TargetFromRS485Flag		
4	0x0004	4005	InputRangeLow		
5	0x0005	4006	InputRangeHigh		
6	0x0006	4007	OutputRangeLow		
7	0x0007	4008	OutputRangeHigh		
8	0x0008	4009	TargetPosition		
9	0x0009	4010	SignalLostPosition	Holding registers.	
10	0x000A	4011	Reserved	READ and WRITE	
11	0x000B	4012	Reserved		
12	0x000C	4013	Reserved		
13	0x000D	4014	Reserved		
14	0x000E	4015	Reserved		
15	0x000F	4016	Reserved		
16	0x0010	4017	Reserved		
17	0x0011	4018	Reserved		
18	0x0012	4019	Reserved		
19	0x0013	4020	Reserved		
20	0x0014	4021	CurrentPosition	Input registers.	
21	0x0015	4022	StatusRegister READ o		

IMPORTANT: All the values sent to the actuator are "HEX" values

Speed and Torgue Settings

During normal operation, the actuator will try to reach the speed set by "**MaximumSpeed**". If the torque required to reach this speed exceeds the actuator model's capability, the actuator will automatically slow down. Please refer to the tables in the Speed and Torque Details section for each actuator model's torque capability.

To accommodate different valves and other applications with different torque requirements, the actuator can be set to apply different torque on the valve stem when in the seating mode. Torque during normal operation is always 100% of the actuator's capability.

To deal with sticking valves, at the beginning of the first reversing movement after the seating ("zeroing") of the valve, the actuator will apply double the power set by "**MaximumPower**" (up to 100% power.) This "pull out" function is always enabled.

Register name	Address	Max	Min	Default	Actuator	Function	Register	Register	CRC
MaximumSpeed	0x0000	3	0	N/A	address	code	address	new value	
Example: Set Maximum speed to 0 in actuator					0x08	0x06	0x0000	0x0000	0x
number 8					1 byte	1 byte	2 bytes	2 bytes	2 bytes

Possible values for the **"MaximumSpeed**" register are shown in the following table. To see how these values relate to physical speed, see the Speed and Torque Details section.

Maximum speed value	Speed level
0	16%
1	33%
2	66%
3	100%

Register name	Address	Max	Min	Default	Actuator	Function	Register	Register	CRC
MaximumPower	0x0001	3	0	N/A	address	code	address	new value	
Example: Set Maximum power to 3 in actuator					0x09	0x06	0x0001	0x0003	0x
number 9					1 byte	1 byte	2 bytes	2 bytes	2 bytes

Possible values for the **"MaximumPower**" register are shown in the following table. To see how these values relate to physical torque values, see the Speed and Torque Details section.

Maximum power value	Power level
0	16%
1	33%
2	66%
3	100%

WARNING: High power settings can supply enough torque to damage your valve. Please be cautious, especially when using the 100% power setting.

- Note: The 66% and 100% power settings have the following particularities:
 - Supply voltage needs to be min. 14 VDC for 66% setting
 - Supply voltage needs to be min. 16 VDC for 100% setting
 - When operating above 20 VDC and 66% power, Duty cycle is reduced to 50% 25% maximum. At these levels, the electronics produce more heat which must be dissipated (depending on environmental temperature)

Speed and Torque Details

RCL-xxxAS Actuators

Speed:	
Maximum Speed Address 0x0000	Time for 1 turn (sec)
0	7
1	3
2	2
3	1

Torque:							
Torque Address							
0x0001	12VDC	24VDC	Operating				
0	6	12	torque is				
1	10	100%					
2	19	38					
3	24	48					
NOTE: If actuator is RCJ-xxxAS, divide torque values by 3. To convert in-lbs to Nm, divide by 9.							

RCM-xxxAS Actuators

Speed:	
Maximum Speed Address 0x0000	Time for 1 turn (sec)
0	23
1	11
2	7
3	4

Torque:								
Torque Address	Seating Tor	rque (in-lbs)						
0x0001	12VDC	24VDC	Operating					
0	17	35	torque is					
1	30	100%						
2	55	115						
3	70	145						
NOTE: If actuator is RCK-xxxAS, divide torque values by 3. To convert in-lbs to Nm, divide by 9.								

RCH-xxxAS Actuators

Speed:	
Maximum Speed Address 0x0000	Time for 1 turn (sec)
0	72
1	45
2	30
3	18

Torque:			
Torque Address	Seating To	rque (in-lbs)	
0x0001	12VDC	24VDC	Operating
0	60	120	torque is
1	102	205	100%
2	200	400	
3	248	497	
To convert in-lbs to Nm, d	ivide by 9.		

RCF-xxxAS Actuators

Speed:							
Maximum Speed Address 0x0000	Time for 1 turn (sec)						
0	197						
1	99						
2	54						
3	38						

Torque:							
Torque Address	Seating To	rque (in-lbs)					
0x0001	12VDC	24VDC	Operating				
0	115	230	torque is				
1	190	380	100%				
2	360	720					
3	457	915					
To convert in-lbs to Nm, divide by 9.							

Writing to All Other Holding Registers

The "**NumberOfTurns**" register allows the user to set the number of turns the actuator performs in the full signal range.

Register name	Address	Max	Min	Default	Actuator	Function	Register	Register	CRC
NumberOfTurns	0x0002	100	1	N/A	address	code	address	new value	
Example: Set number of turns to 32 in actuator				0x0A	0x06	0x0002	0x0020	0x	
number 10			1 byte	1 byte	2 bytes	2 bytes	2 bytes		

The "**TargetFromRS485Flag**" register tells the actuator where to read its target position from. If the flag is set to 1, the actuator will take the value from a 4-20 mA input as its target position. If the flag is set to 0, the actuator will take the value from the "**TargetPosition**" register as its target position. Remember: all values sent to actuator are HEX values.

Register name	Address	Max	Min	Default	Actuator	Fct.	Register	Register	CRC
TargetFromRS485Flag	0x0003	1	0	N/A	address	code	address	new value	
Exemple: Make actuate	0x0B	0x06	0x0003	0x0000	0x				
Example: Make actuator	1	1	2	2	2				
position from the "Target	byte	byte	bytes	bytes	bytes				

The "**InputRangeLow**" register allows the user to set the lower limit of the input signal (i.e. the value of the input signal at which the actuator will move to the fully closed position).

Register name	Address	Max	Min	Default	Actuator	Function	Register	Register	CRC
InputRangeLow	0x0004	64900	0	0	address	code	address	new value	
Example: Set input range low to 4000 in actuator				0x0C	0x06	0x0004	0x0FA0	0x	
number 12				1 byte	1 byte	2 bytes	2 bytes	2bytes	

The "**InputRangeHigh**" register allows the user to set the upper limit of the input signal (i.e. the value of the input signal at which the actuator will open the valve to the number of turns specified in the "**NumberOfTurns**" register – fully open).

Register name	Address	Max	Min	Default	Actuator	Function	Register	Register	CRC
InputRangeHigh	0x0005	65000	100	10000	address	code	address	new value	
Example: Set inp	actuator	0x17	0x06	0x0005	0xFDE8	0x			
number 23		1 byte	1 byte	2 bytes	2 bytes	2bytes			

The value stored in the "**InputRangeLow**" register must always be lower than the value stored in the "**InputRangeHigh**" register. If you try to write an illogical range, the actuator will answer with exception code **0x03** indicating that the new value is not valid. Remember: all values sent to actuator are HEX.

The "**OutputRangeLow**" register allows the user to set the lower limit of the feedback signal (i.e. the value of the feedback signal when the actuator is in the fully closed position).

Register name	Address	Max	Min	Default	Actuator	Fct.	Register	Register	CRC
OutputRangeLow	0x0006	64900	0	0	address	code	address	new value	
Example: Set input range low to 4000 in actuator					0x0C	0x06	0x0006	0x0FA0	0x
number 12	1 byte	1 byte	2 bytes	2 bytes	2bytes				

The "**OutputRangeHigh**" register allows the user to set the upper limit of the feedback signal (i.e. the value of the feedback signal when the actuator is opened to the number of turns specified in the "**NumberOfTurns**" register – fully open).

Register name	Address	Max	Min	Default	Actuator	Fct.	Register	Register	CRC
OutputRangeHigh	0x0007	65000	100	10000	address	code	address	new value	
Example: Set input	0x17	0x06	0x0007	0xFDE8	0x				
number 23	1 byte	1 byte	2 bytes	2 bytes	2bytes				

The value stored in the "**OutputRangeLow**" register must always be lower than the value stored in the "**OutputRangeHigh**" register. If you try to write an illogical range, the actuator will answer with exception code **0x03** indicating that the new value is not valid. Remember: all values sent to actuator are HEX.

The "TargetPosition" is the input signal, which tells the actuator where to position the valve.

Register name	Address	Max	Min	Default	Actuator	Fct.	Register	Register	CRC
TargetPosition	0x0008	Input	Input	N/A	address	code	address	new value	
		Range Low	Range High						
Example: Set the target position to 3000 in actuator					0x12	0x06	0x0008	0x0BB8	0x
number 18	1 byte	1byte	2 bytes	2 bytes	2bytes				

If the value in "**TargetPosition**" is the same as the value in "**InputRangeLow**" the actuator will re-zero, finding the valve seat and closing the valve completely. This enables a new fully closed position to be established based on normal wear of the valve seat.

If the value in **"TargetPosition**" is the same as the value in **"InputRangeHigh**" the valve will be opened to the maximum number of turns, as set by the **"NumberOfTurns**" register.

Example:

The actuator parameters are set to (decimal representation for simplicity): NumberOfTurns = 10 InputRangeLow = 500 InputRangeHigh = 2500

- To close the valve, the "TargetPosition" register has to be set to 500.
- To open the valve 5 turns, the TargetPosition" register has to be set to 1500.

To have the actuator use **"TargetPosition**" as its target position, **"TargetFromRS485Flag**" must be 0.

The value stored in the "**TargetPosition**" register must always be lower or equal to "**OutputRangeHigh**" and greater or equal to "**OutputRangeLow**". If you try to write a value out of the range, the actuator will answer with exception code **0x03** indicating that the new value is not valid.

Signal Loss

The **"SignalLostPosition**" register can be used (optional) to set the position of the actuator upon signal loss. Signal loss can only occur when controlling the actuator with 4-20 mA (or 1-5 V) input signals, i.e. when **"TargetFromRS485Flag**" is set to 1. The signal is considered lost when it falls below 2.80 mA (or 0.700 V).

Register name	Address	Max	Min	Default	Actuator	Fct.	Register	Register	CRC
SignalLost	0x0009	Input	Input	0xFFFF	address	code	address	new value	
Position		Range	Range						
		Low	High						
Example: Set th	0x13	0x06	0x0009	0x0BB8	0x				
actuator number	1 byte	1byte	2 bytes	2 bytes	2bytes				

1. For actuators that are not connected to a UPS (Uninterruptible Power Supply), the loss of signal will be simultaneous with power loss. Consequently, the actuator will not be able to move anywhere. In the shutdown process, the actual position is automatically saved to the internal EEPROM. [This saving of the position only happens for min. 18 VDC supplies] When power is restored, the actuator will "know" where it's at and will simply start to follow the signal as received.

IF YOU HAVE TO turn the actuator manually when its power is turned off, it will lose its position, and it will need to be re-zeroed (as described in the Calibration section)

2. For actuators that are connected to a UPS the actuator will move to the position defined by the value in the "SignalLostPosition" register.

The default value is 0xFFFF (DEC: 65535). The actuator will ignore the lost signal, and simply remain in its current position.

If the value is between "InputRangeLow" and "InputRangeHigh", the actuator will move to the value in SignalLostPosition when the signal is lost

Reading the Input Registers

The physical meaning of the value in the "CurrentPosition" register depends on the values in the "OutputRangeLow" and "OutputRangeHigh" registers, as well as the "NumberofTurns" register.

Example:

The actuator parameters are set to (decimal representation for simplicity): NumberOfTurns = 10 OutputRangeLow = 500 OutputRangeHigh = 2500

- If "CurrentPosition" equals to 500, that means the valve is closed
- If "CurrentPosition" equals to 1500, that means the valve is 5 turns opened

To read the value from the "CurrentPosition" register:

Register name	Address	Max	Min	Default	Actuator	Function	Register	Qty of	CRC
CurrentPosition	0x0014	N/A	N/A	N/A	address	code	address	registers	
Example: Read th	Example: Read the current position in actuator					0x04	0x0014	0x0001	0x
number 31		1 byte	1 byte	2 bytes	2 bytes	2 bytes			

The meaning of the value in the "**StatusRegister**" is described below. Only Bits 0-4 are associated with a physical meaning.

Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bits 5 to 15
Discrete input 1	Discrete input 2	Discrete input 3	Discrete input 4	Discrete input 5	Discrete input 6 to 16
Opened	Closed	Stalled opening	Stalled closed	Signal lost	Reserved
This bit will be '1' if the actuator is in the completely open position.	This bit will be '1' if the actuator is in the completely closed position.	This bit will be '1' if the actuator gets stalled while moving in the opening direction.	This bit will be '1' if the actuator gets stalled while moving in the closing direction.	This bit will be '1' if the input signal falls below 2.80 mA or 0.700 V.	-

To read the value from the "StatusRegister" register:

Register name	Address	Max	Min	Default	Actuator	Function	Register	Qty of	CRC
StatusRegister	0x0015	N/A	N/A	N/A	address	code	address	registers	
Example: Read the status register in actuator					0x20	0x04	0x0015	0x0001	0x
number 32			1 byte	1 byte	2 bytes	2 bytes	2 bytes		

Alternatively, the Bits in "StatusRegister" can be read independently by using function code 2. In the PDU, Discrete Inputs are addressed starting at zero. Therefore, Discrete Inputs numbered 1-5 are addressed as 0-4.

Example 1

To read all discrete inputs in actuator number 33, the master needs to send:

Actuator address	Function code	Input address	Qty of inputs	CRC
0x21	0x02	0x0000	0x0005	0x
1 byte	1 byte	2 bytes	2 bytes	2 bytes

Example 2

To read the discrete inputs 1 and 2 (opened and closed) in actuator number 33, the master needs to send:

Actuator address	Function code	Input address	Qty of inputs	CRC
0x21	0x02	0x0000	0x0002	0x
1 byte	1 byte	2 bytes	2 bytes	2 bytes

Example 3

To read the discrete input 4 (stalled closed) in actuator number 33, the master needs to send:

Actuator address	Function code	Input address	Qty of inputs	CRC
0x21	0x02	0x0003	0x0001	0x
1 byte	1 byte	2 bytes	2 bytes	2 bytes

Using Function Codes

Register name	Address	Max	Min	Default	Actuator	Function	CRC
N/A	0x0064	N/A	N/A	N/A	address	code	
Example: Re-zero actuator number 1		0x01	0x64	0x			
						1 byte	2 bytes

Register name	Address	Max	Min	Default	Actuator	Function	CRC
N/A	0x0065	N/A	N/A	N/A	address	code	
Example: Close t	0x01	0x65	0x				
					1 byte	1 byte	2 bytes

Register name	Address	Max	Min	Default	Actuator	Function	CRC
N/A	0x0066	N/A	N/A	N/A	address	code	
Example: Open t	0x01	0x66	0x				
		1 byte	1 byte	2 bytes			

Calibration

If the actuator is being controlled via 4-20 mA (resp. 1-5 V) input, i.e. the "**TargetFromRS485Flag**" register contains value 1, the actuator will re-zero when the input signal is between 2.80 and 4.16 mA (resp. 0.700 and 1.04 V). It will turn clockwise until the actuator has reached the fully closed position of the valve.

If the actuator is being controlled via Modbus protocol, i.e. "**TargetFromRS485Flag**" register contains value 0, the actuator will re-zero when the value in the "**TargetPosition**" register is the same as the value in the "**InputRangeLow**" register.

If the valve is removed for any reason, the calibration routine must be initiated on the actuator manually after re-mounting the valve. This is done by toggling DIP 12 (switch position, then back to the original position) while the actuator is powered. Alternatively, use command code 0x64 (refer also to the Modbus Protocol section). The valve will close very slowly, finding the seat and preventing any damage.

If you need to re-zero in the opposite direction (i.e.: for pressure regulators, which typically go to the "top" fully open position at 4 mA) change the setting of DIP 12 and cycle power.

WARNING: It is <u>VERY</u> important that you put DIP 12 back to its original setting. Failing to do so will make the actuator turn in the opposite direction next time you power it up.

Troubleshooting

Upon noticing a problem, your first step should almost always be to recalibrate the actuator by toggling DIP 12, or using command code 0x64, while the actuator is powered. This alone can solve basic problems. See the Calibration section above for more details.

If the actuator does not move, try following these steps:

- 1) Re-calibrate the actuator. This will move the actuator regardless of what signal it is receiving.
- 2) A sticking valve may be the problem. Remove the valve from the actuator, and re-test the actuator.
- 3) Remove power. Re-check the wiring and the power/signal apparatus. Power actuator and re-calibrate. If the problem persists, please call Rotork for technical support.

Any parts found to be defective should be examined and/or replaced by Rotork.

Manual Override

The RCx-xxxAS actuator with manual override can also be certified for hazardous locations. The additional manual override gear case and handle has no effective ignition sources and can therefore be used in all hazardous locations for which the actuator enclosure is certified.

Operation of the manual override when the actuator is powered will be difficult as the actuator will try to maintain the valve in the position it has been commanded to.

Power should be removed if the valve is to be moved manually. If the valve is moved with the manual override when its power is turned off, it will lose its position, and it will need to be re-zeroed (as described in the Calibration section).

CERTIFICATIONS

Hazardous Location Rating (Ex) Actuator model number: RCx-<u>B</u>xxAx

Canada:

Class I, Division 1, Groups B, C, D (T5) Class II, Division 1, Groups E, F, G (T5)

CSA C22.2 No. 30-M1986 CSA C22.2 No. 25-17

Ambient temperature range: -50°C to +40°C

* Serial number will be engraved on lid. Lid engraving with Canadian hazardous location certification:

USA:

Class I, Division 1, Groups B, C, D (T5) Class II, Division 1, Groups E, F, G (T5)

UL 1203 (Edition 5.0)

Ambient temperature range: -20°C to +40°C

* Serial number will be engraved on lid. Lid engraving with USA hazardous location certification:

This actuator is approved for: Cet actuateur est approuvé pour: Class I, Division 1, Group B,C,D Class II, Division 1, Group E,F,G

International (IECEx) – available upon request: Ex db IIB+H2 T3 Gb

IEC 60079-0:2017, 7th Edition IEC 60079-1:2014, 7th Edition

*Serial number will be engraved on the lid.

Electrical Compliance (EC)

Canada & USA:

CSA.UL 61010-1

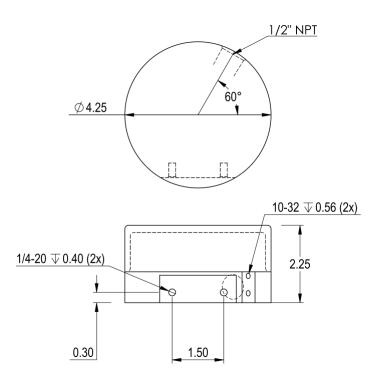
Europe:

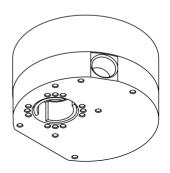
EC Declaration of Conformity (CE) UK Declaration of Conformity (UKCA)

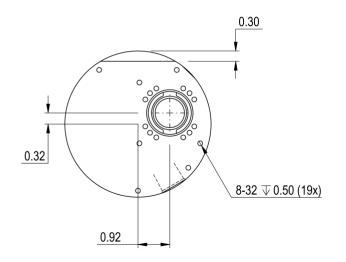
Electromagnetic Compatibility (EMC)

United States: FCC 47 CFR Part 15, Subpart B (Unintentional radiators), Class A

Canada: ICES-001 Issue 5, July 2020, Class A


Europe: EN 61326-1:2013 (Group 1, Class A; Industrial electromagnetic environment) IEC 61000-6-2:2016 IEC 61000-6-4:2018

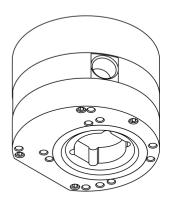

Dust and Water Ingress Protection (IP)

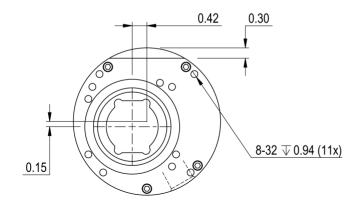

IP68, certified using standard IEC 60529:2013.

ACTUATOR DIMENSIONS

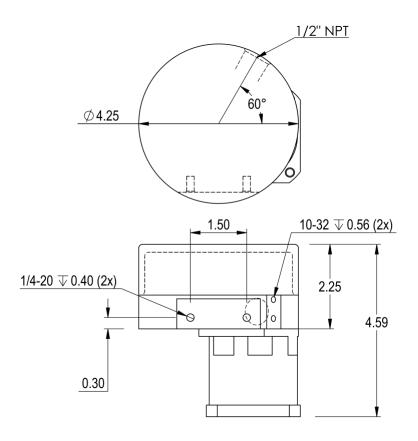
RCJ, RCL & RCM -xxxAS models

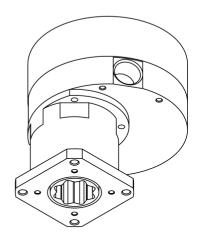


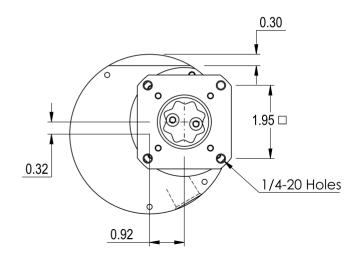


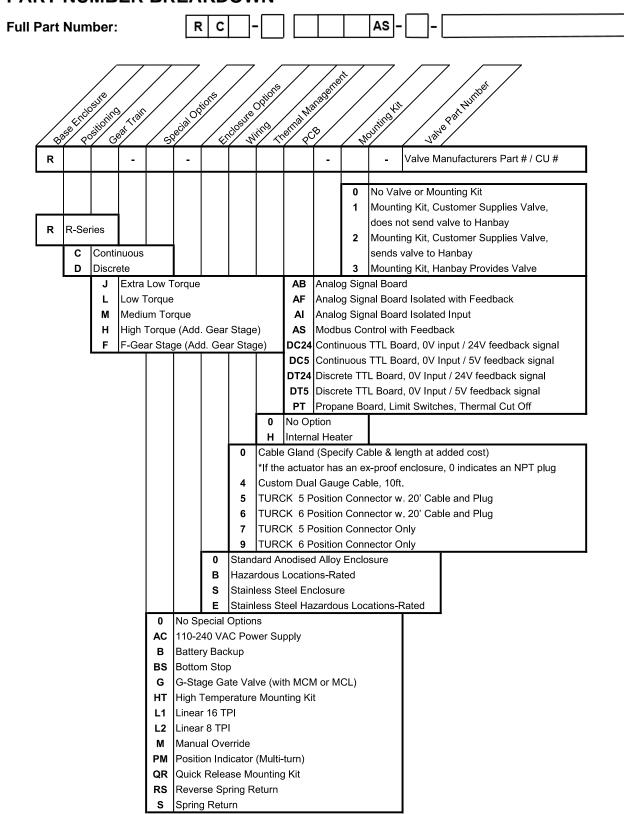


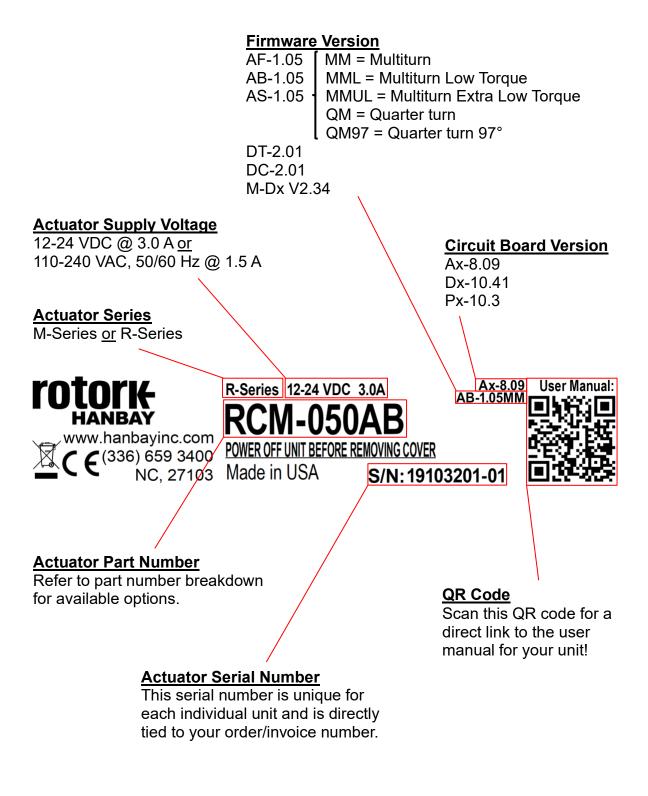
RCH-xxxAS models








RCF-xxxAS models



Œ

LABEL BREAKDOWN

As part of a process of on-going product development, Rotork reserves the right to amend and change specifications without prior notice. Published data may be subject to change. For the very latest version release, visit our website at www.rotork.com The name Rotork is a registered trademark. Rotork recognises all registered trademarks.

Published and produced in the UK by Rotork. POLJB0424

